
Wasocaml: compiling OCaml to
WebAssembly

Léo Andrès <l@ndrs.fr>1, 2

Pierre Chambart <pierre.chambart@ocamlpro.com>1

Jean-Christophe Filliâtre <jean-christophe.filliatre@cnrs.fr>2

August 2023 – IFL’23 – Braga

1. OCamlPro
2. Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, Laboratoire Méthodes Formelles

1

JavaScript:

• bad/unpredictable performances

• unsafe

WebAssembly (Wasm) is safe and has good/predictable
performances, used:

• on the Web: V8, SpiderMonkey

• on the Cloud: Fastly, CloudFlare

• as a portable binary format

• to interface with C from other languages

2

Wasm1:

• compact binary format (Wasm) and text format (Wat)

• functions

• stack (can not be inspected)

• static verification and typecheck (few dynamic tests)

• one memory per module

• only scalar types: i32, i64, f32, f64

• only exported items can be used by other modules

• can be seen as a simplified C

3

Wat with S-expressions:

(func $fact (param $x i32) (result i32)
(if (i32.eq (local.get $x) (i32.const 0))

(then (i32.const 1))
(else

(i32.mul
(local.get $x)
(call $fact

(i32.sub
(local.get $x)
(i32.const 1)))))))

4

Wat with ASM syntax:

(func $fact (param $x i32) (result i32)
i32.const 0
local.get $x
i32.eq
(if

(then i32.const 1)
(else

local.get $x
i32.const 1
i32.sub
call $fact
local.get $x
i32.mul)))

5

Compiling runtime-free languages such as C/C++/Rust to
Wasm is straightforward.

Some primitives such as malloc need to be rewritten in Wasm
and provided by the compiler.

6

How does a GC work?

• Tracing: we start from roots and we find live objects
recursively (OCaml, Java)

• Reference counting: we start from dying objects and we
kill objects recursively (Python1)

1plus a tracing one for cycles…

7

We need to discriminate pointers:

• Conservative (Boehm): we make a guess and accept
memory leaks (Crystal, Guile, Inkscape).

• Precise: we have the right information (almost
everybody).

Need the information somewhere at runtime: similar to
polymorphism

8

Compiling GC languages to Wasm1 is more involved:

• runtime must be rewritten, or compiled from C to Wasm:
difficult because of Wasm safety properties

• GC need to inspect the stack to find roots, not possible in
Wasm, requires a shallow stack

• interactions with the GC of the embedder are difficult
(cycles can’t be collected)

Need for a proper GC in Wasm.

9

Requirements:

• safe and fast

• do not make Wasm1 code slower

• can represent values from any language

10

A type system to represent values from any kind of source
language is too complex.

Instead, WasmGC introduces reference types and a subtyping
hierarchy:

any

eq

i31 struct array

func extern

The hierarchy tells which casts are allowed.

11

any

eq

i31 struct array

func extern

Upcasts are implicit.
Downcasts are explicit and lead to runtime errors if incorrect.

Casts are cheap.
Possible to dynamically test for compatibility.

12

13

Lambda closures are still implicit, not optimised

Bytecode not enough optimised

Clambda code pointers and values mixed in closures

Cmm even more low-level (pointer arithmetic)

Flambda our choice for the first prototype

Flambda2 our choice for the future

Flambda:

• ANF

• explicit closures

• high-level: works on abstract values and not directly on
the actual memory layout (this is done by Cmm)

14

let rec iter f l =
match l with
| [] -> ()
| hd :: tl ->

f hd;
iter f tl

let () =
let iter_print = iter print_int in
iter_print [2; 1]

15

let iter =
let set = make_closures
| cl_iter { f } env ->

let otherset = make_closures
| cl_iter_f { l } envtwo ->

switch l
with int | 0 -> const 0
with tag | 0 ->

let x = get_field 0 l
let f = project_var f from envtwo
let dummy = f x
let tl = get_field 1 l
envtwo tl

with vars | f -> f end
project_closure cl_iter_f from otherset

project_closure cl_iter from set

let lempty = const 0
let one = const 1
let lone = make_block 0 one lempty
let two = const 2
let ltwo = make_block 0 two lone
let iter_print = iter print_int
iter_print ltwo

16

uniform representation using a tagged single machine word:

bn−1 bn−2 . . . b1 b0

if b0 = 0, the value is a pointer to a heap-allocated block:

bn−1 bn−2 . . . b1 0 bn−1 bn−2 . . . b1 0

if b1 = 1, the n− 1 most significant bits are a small scalar:

bn−1 bn−2 . . . b1 1 bn−1 bn−2 . . . b1 1

small scalars: bool, char, int, constant constructors of ADTs

17

any

eq

i31 struct array

func extern

Uniform representation through eqref (== operator).
Can’t be more precise because of Obj.magic, GADTs and
types that have scalar/blocks values.
Small scalars are i31ref.
OCaml arrays are array.
Others heap-allocated blocks are struct or array.

18

In get_field n x the type of x is unknown.

Could propagate more types but breaks some optimisations.

Not enough because of Obj.field.

All we know is that x is a block of size n+ 1 at least.

19

Blocks as structs:

(type $block1 (struct
(field $tag i8)
(field $field0 eqref)))

(type $block2 (sub $block1) (struct
(field $tag i8)
(field $field0 eqref)
(field $field1 eqref)))

;; and so on...

We cast x to $block(n+ 1).

20

swrup/ocaml-emoji:

let fox = "🦊"
let framed_picture = "🖼"
let free_button = "🆓"
let french_fries = "🍟"
let fried_shrimp = "🍤"
let frog = "🐸"
let front_facing_baby_chick = "🐥"

Modules represented as blocks: each toplevel value is a field.

too long subtyping chain ☹

We have two variants to avoid this problem while still using
struct, not implemented yet.

21

swrup/ocaml-emoji:

let fox = "🦊"
let framed_picture = "🖼"
let free_button = "🆓"
let french_fries = "🍟"
let fried_shrimp = "🍤"
let frog = "🐸"
let front_facing_baby_chick = "🐥"

Modules represented as blocks: each toplevel value is a field.

too long subtyping chain ☹

We have two variants to avoid this problem while still using
struct, not implemented yet.

21

swrup/ocaml-emoji:

let fox = "🦊"
let framed_picture = "🖼"
let free_button = "🆓"
let french_fries = "🍟"
let fried_shrimp = "🍤"
let frog = "🐸"
let front_facing_baby_chick = "🐥"

Modules represented as blocks: each toplevel value is a field.

too long subtyping chain ☹

We have two variants to avoid this problem while still using
struct, not implemented yet.

21

swrup/ocaml-emoji:

let fox = "🦊"
let framed_picture = "🖼"
let free_button = "🆓"
let french_fries = "🍟"
let fried_shrimp = "🍤"
let frog = "🐸"
let front_facing_baby_chick = "🐥"

Modules represented as blocks: each toplevel value is a field.

too long subtyping chain ☹

We have two variants to avoid this problem while still using
struct, not implemented yet.

21

Blocks as arrays:

(type $block (array eqref))

An array of eqref with the tag stored at position 0.

Tradeoffs:

• implicit bounds check at each access

• cast to read the tag

• probably cheaper than subtyping test

• can’t use more precise types if they were propagated

22

Closures:

;; a closure with two captured variables
(type $closure1 (struct

(field funcref)
(field $v1 eqref)
(field $v2 eqref)))

Actual representation is more complex to handle mutually
recursive functions and to reduce casts.
Only place where we use Wasm recursive types.
To handle currification, functions of arity one need to be
supertypes of all others closures.

23

Exceptions:

• use the exception handling proposal

• maps quite directly

• don’t have runtime generated exceptions

• a single Wasm exception, handle identifiers on the side

24

A proper small-step semantics for a subset of Flambda where
functions all have arity one, objects primitives are removed
and where exceptions are only static.

The first Flambda1 semantics.

A formalized compilation scheme from Flambda1 to
WasmGC.

Proof of correctness is not done yet (would like to use
WasmGC semantics which is still ongoing work).

The parser, interpreter and compiler targeting WasmGC for
mini-Flambda1 fit in 1300 lines of OCaml.

25

A proper small-step semantics for a subset of Flambda where
functions all have arity one, objects primitives are removed
and where exceptions are only static.

The first Flambda1 semantics.

A formalized compilation scheme from Flambda1 to
WasmGC.

Proof of correctness is not done yet (would like to use
WasmGC semantics which is still ongoing work).

The parser, interpreter and compiler targeting WasmGC for
mini-Flambda1 fit in 1300 lines of OCaml.

25

A proper small-step semantics for a subset of Flambda where
functions all have arity one, objects primitives are removed
and where exceptions are only static.

The first Flambda1 semantics.

A formalized compilation scheme from Flambda1 to
WasmGC.

Proof of correctness is not done yet (would like to use
WasmGC semantics which is still ongoing work).

The parser, interpreter and compiler targeting WasmGC for
mini-Flambda1 fit in 1300 lines of OCaml.

25

A proper small-step semantics for a subset of Flambda where
functions all have arity one, objects primitives are removed
and where exceptions are only static.

The first Flambda1 semantics.

A formalized compilation scheme from Flambda1 to
WasmGC.

Proof of correctness is not done yet (would like to use
WasmGC semantics which is still ongoing work).

The parser, interpreter and compiler targeting WasmGC for
mini-Flambda1 fit in 1300 lines of OCaml.

25

A proper small-step semantics for a subset of Flambda where
functions all have arity one, objects primitives are removed
and where exceptions are only static.

The first Flambda1 semantics.

A formalized compilation scheme from Flambda1 to
WasmGC.

Proof of correctness is not done yet (would like to use
WasmGC semantics which is still ongoing work).

The parser, interpreter and compiler targeting WasmGC for
mini-Flambda1 fit in 1300 lines of OCaml.

25

The real compiler is called Wasocaml and is available at
github.com/ocamlpro/wasocaml.

Meant as a way to demonstrate the usefulness of i31ref and
convinced the WasmGC working group (along with the Guile
implementation that came a few months later).

Only a fraction of the stdlib externals are provided and the
object fragments of the language has not yet been
implemented.

The first compiler for a real-world functional language
targeting WasmGC.

26

https://github.com/ocamlpro/wasocaml

The real compiler is called Wasocaml and is available at
github.com/ocamlpro/wasocaml.

Meant as a way to demonstrate the usefulness of i31ref and
convinced the WasmGC working group (along with the Guile
implementation that came a few months later).

Only a fraction of the stdlib externals are provided and the
object fragments of the language has not yet been
implemented.

The first compiler for a real-world functional language
targeting WasmGC.

26

https://github.com/ocamlpro/wasocaml

The real compiler is called Wasocaml and is available at
github.com/ocamlpro/wasocaml.

Meant as a way to demonstrate the usefulness of i31ref and
convinced the WasmGC working group (along with the Guile
implementation that came a few months later).

Only a fraction of the stdlib externals are provided and the
object fragments of the language has not yet been
implemented.

The first compiler for a real-world functional language
targeting WasmGC.

26

https://github.com/ocamlpro/wasocaml

The real compiler is called Wasocaml and is available at
github.com/ocamlpro/wasocaml.

Meant as a way to demonstrate the usefulness of i31ref and
convinced the WasmGC working group (along with the Guile
implementation that came a few months later).

Only a fraction of the stdlib externals are provided and the
object fragments of the language has not yet been
implemented.

The first compiler for a real-world functional language
targeting WasmGC.

26

https://github.com/ocamlpro/wasocaml

Benchmarks using the experimental branch of V8:

No real sized programs for now.

Classical functional microbenchmarks are two times slower
than native OCaml..

Knuth-Bendix: exceptions are slow (100 times slower than
native for a raise) and we need to discuss this with the V8
team (in SpiderMonkey they’re fast but other extensions are
missing).

27

Benchmarks using the experimental branch of V8:

No real sized programs for now.

Classical functional microbenchmarks are two times slower
than native OCaml..

Knuth-Bendix: exceptions are slow (100 times slower than
native for a raise) and we need to discuss this with the V8
team (in SpiderMonkey they’re fast but other extensions are
missing).

27

Benchmarks using the experimental branch of V8:

No real sized programs for now.

Classical functional microbenchmarks are two times slower
than native OCaml..

Knuth-Bendix: exceptions are slow (100 times slower than
native for a raise) and we need to discuss this with the V8
team (in SpiderMonkey they’re fast but other extensions are
missing).

27

Benchmarks using the experimental branch of V8:

No real sized programs for now.

Classical functional microbenchmarks are two times slower
than native OCaml..

Knuth-Bendix: exceptions are slow (100 times slower than
native for a raise) and we need to discuss this with the V8
team (in SpiderMonkey they’re fast but other extensions are
missing).

27

Since yesterday:

• do not use Wasm exceptions

• return a pair with a boolean set to true when an
exception was raised

• a hundred times faster than Wasm exceptions

• KB: 2.7 times slower than native

28

Since yesterday:

• do not use Wasm exceptions

• return a pair with a boolean set to true when an
exception was raised

• a hundred times faster than Wasm exceptions

• KB: 2.7 times slower than native

28

Since yesterday:

• do not use Wasm exceptions

• return a pair with a boolean set to true when an
exception was raised

• a hundred times faster than Wasm exceptions

• KB: 2.7 times slower than native

28

Since yesterday:

• do not use Wasm exceptions

• return a pair with a boolean set to true when an
exception was raised

• a hundred times faster than Wasm exceptions

• KB: 2.7 times slower than native

28

Since yesterday:

• do not use Wasm exceptions

• return a pair with a boolean set to true when an
exception was raised

• a hundred times faster than Wasm exceptions

• KB: 2.7 times slower than native

28

With casts as no-ops we have a 10% gain.

With optimisations and Flambda2 it should be much better.

Jsoo is slower in an unpredictable fashion (up to 40 times)

29

In the JS FFI all calls go through Js.Unsafe.meth_call
of type 'a -> string -> any array -> 'b

We can provide:

(func $meth_call
(param $obj externref)
(param $method stringref)
(param $args $anyarray)
(result externref))

30

With recent additions to Clang, it would be possible to re-use
existing bindings and to compile the C code with emscriptem
with almost no changes to the bindings.

We only need to provide alternative FFI headers files,
replacing usual macros by hand-written Wasm functions.

The only limitation we forsee is that the Field macro won’t
be usable as an l-value anymore. We would need a new
Set_field macro instead.

Field(v, n) = ...; // not anymore
Set_field(b, v, n); // OK

31

OCaml 5.0 is multicore. We’re based on 4.14 so effects
handlers are not supported.
We could use:

• CPS transformation

• stack-switching proposal

• JS Promise Integration

32

Contributions:

• OCaml Wasm backend github.com/ocamlpro/wasocaml

• the first compiler for a functional language to WasmGC

• impact on the GC proposal for Wasm

• the first Flambda1 semantics

• a formalized compilation scheme

• compilation strategies usable by others compilers

• ongoing: proof of the compilation

• ongoing: symbolic execution of WasmGC program

Thanks!

33

