
Owi: cross-language, multi-core,
 multi-solver symbolic execution

Léo ..., Pierre Chambart, Arthur Carcano @ OCamlPro

Filipe Marques, José Fragoso Santos @ University of Lisbon

… Andrès, Jean-Christophe Filliâtre @ Université Paris-Saclay
With contributions from Dario Pinto, Eric Patrizio, Frederico Ramos, Olivier Pierre,
Zhicheng Hui, Vasu Singh, Simon Ser, Neha Chriss, Hichem Rami Ait El Hara, Basile

Clément, Saïd Zuhair, Émilien Lemaire, Félix Loyau-Kahn, Nathanaëlle Courant,
Gabriel Scherer

4th of June – <Programming> 2025 @ Prague

2 / 42

Outline

1. The story
2. Technical stuff
3. Fun stuff

The Story

4 / 42

2015 - 2017

▶ a fast, safe, portable compilation target
▶ available since 2017 in browsers
▶ used in cloud, edge, IoT, embedded systems…
▶ C, C++ and Rust have a Wasm backend

5 / 42

August 2020

Do you want to do a PhD thesis at
OCamlPro? What about compiling
OCaml to WebAssembly?

— Pierre Chambart

6 / 42

September 2020

A PhD about compiling garbage-
collected languages to Wasm? I
don’t know what is Wasm but yes,
sure.

— Jean-Christophe Filliâtre

7 / 42

October 2020 - September 2021

Waiting for french administration to
validate the PhD project. Took 1 year!

8 / 42

October 2021 - December 2022

PhD finally started, in the first year:

▶ made Owi, a Wasm interpreter to learn and experiment
▶ made Wasocaml, an OCaml to Wasm compiler

9 / 42

Dagstuhl Mars 2023

Presented Wasocaml, an OCaml to
Wasm compiler, and Owi was briefly
mentionned.

10 / 42

Dagstuhl Mars 2023

What about making a symbolic
interpreter with Owi?

— José Fragoso Santos (Assistant
Professor in Lisbon)

11 / 42

Paris June 2023

▶ Filipe Marques is the PhD student of
José

▶ they made WASP, a Wasm concolic
interpreter based on the reference
interpreter

▶ published at ECOOP
▶ both came one week in Paris to tell

us about it

12 / 42

June - September 2023

Owi is now
symbolic !

13 / 42

December 2024

▶ I defended!

What happened in
between?

Answer after the
technical part!

2. Technical stuff

15 / 42

Outline

1. Wasm 101
2. Symbolic Execution 101
3. From concrete to symbolic

16 / 42

Wasm 101

▶ stack-based language;
▶ simple types (i32, i64, f32, f64) ;
▶ statically typed ([i32 ; f32] -> [i32]);
▶ functions ;
▶ a formal semantics, with no undefined behabiour.

17 / 42

Wasm 101

(module

 (func $f (param $n i32) (result i32)
 ;; []
 (i32.lt_s (local.get $n) (i32.const 2)) ;; [n < 2]
 (if (then ;; []
 local.get $n ;; [n]
 return)) ;; early return
 ;; []
 (i32.sub (local.get $n) (i32.const 2)) ;; [n-2]
 call $f ;; [f(n-2)]
 (i32.sub (local.get $n) (i32.const 1)) ;; [n-1; f(n-2)]
 call $f ;; [f(n-1); f(n-2)]
 i32.add ;; [f(n-1) + f(n-2)]
 ;; implicit return
))

18 / 42

Symbolic Execution 101

A technique for:

▶ finding bugs in programs (and proving properties);
▶ implementing solver-aided programming;
▶ test-case generation.

Complete Sound

Automatic
Symbolic execution Abstract interpretation

Deductive verification

19 / 42

Symbolic Execution 101

(func $mean (param $x i32) (param $y i32)
 (local $mean i32)

 i32.const 2 ;; [2]
 (i32.add
 (local.get $x) (local.get $y)) ;; [(x+y) ; 2]
 i32.div_u ;; [(x+y) / 2]
 local.set $mean ;; []

 (i32.lt_u (local.get $mean) (local.get $x))
 (if (then
 (i32.lt_u (local.get $mean) (local.get $y))
 (if (then unreachable))))

 local.get $mean)

⊤ ⊥

mean < x

⊤ ⊥

mean < y mean ≥ x

trap mean ≥ y

20 / 42

Symbolic Execution 101

(func $mean (param $x i32) (param $y i32)
 (local $mean i32)

 i32.const 2 ;; [2]
 (i32.add
 (local.get $x) (local.get $y)) ;; [(x+y) ; 2]
 i32.div_u ;; [(x+y) / 2]
 local.set $mean ;; []

 (i32.lt_u (local.get $mean) (local.get $x))
 (if (then
 (i32.lt_u (local.get $mean) (local.get $y))
 (if (then unreachable))))

 local.get $mean)

Unreachable
model {
 symbol x 2147483650
 symbol y 2147483655
}

Indeed:

(x ⊕ y)
2

= 2147483650 ⊕ 2147483655
2

= 9
2

= 4

21 / 42

Symbolic Execution 101

We want to find input values leading to a state 𝑆.

▶ input values are represented by symbols
▶ the program executes with expressions made of concrete values + symbols
▶ when branching both branches are explored
▶ information about previous branches is kept in the path condition (PC)
▶ when 𝑆 is reached, a model is generated by an SMT solver from the PC

This model corresponds to the input values leading to the state 𝑆.

22 / 42

From Concrete To Symbolic

The initial Owi concrete interpreter:

match instr, stack with
| Binop Add, (x :: y :: stack) ->
 (add_i32 x y) :: stack
| If_else (t, f), (b :: stack) ->
 let b = bool_of_i32 b in
 if b then eval t stack
 else eval f stack

How to get a symbolic interpreter from this?

23 / 42

Step 1/2 : Abstract Over the Type of Values

We use an abstract Value module:

match instr, stack with
| Binop Add, (x :: y :: stack) ->
 (Value.add_i32 x y) :: stack
| If_else (t, f), (b :: stack) ->
 let b = Value.bool_of_i32 b in
 if b then eval t stack
 else eval f stack

module type Value = sig
 type t
 val add_i32 : t -> t -> t
 type bool
 val bool_of_i32 : t -> bool
end

24 / 42

Step 2/2 : Abstract Over the Execution Strategy

We use an abstract Choice module:

match instr, stack with
| Binop Add, (x :: y :: stack) ->
 (Value.add_i32 x y) :: stack
| If_else (t, f), (b :: stack) ->
 let b = Value.bool_of_i32 b in
 (* the single new line: *)
 let* b = Choice.select cond in
 if b then eval t stack
 else eval f stack

module type Choice = sig
 type 'a t
 val return: 'a -> 'a t
 val bind: 'a t -> ('a -> 'b t) -> 'b t
 val select: Value.bool -> bool t
end

▶ most of the code unchanged
▶ we must insert Choice.select and Choice.bind at branching point

25 / 42

How is implemented the symbolic Choice monad?

It was hard. We rewrote it four times. Then…

Arthur Carcano implemented it nicely with:
▶ an error monad;
▶ a state monad;
▶ a coroutine monad.

Combined using three layered monad transformers.

The exploration is done in parallel thanks to OCaml 5!

Described in length in the paper.

Fun stuff

Multi-Language

28 / 42

C Symbolic Execution

#include <owi.h>

unsigned int mean1(unsigned int x,
 unsigned int y) {
 return (x & y) + ((x ^ y) >> 1); }

unsigned int mean2(unsigned int x,
 unsigned int y) {
 return (x + y) / 2; }

void check(unsigned int x, unsigned int y) {
 owi_assert(mean1(x, y) == mean2(x, y)); }

void main(void) {
 unsigned int x = owi_i32();
 unsigned int y = owi_i32();
 check(x, y); }

The subcommand owi c takes
care of compiling and linking:

$ owi c ./function_equiv.c
Assert failure
model {
 symbol_0 i32 -922221680
 symbol_1 i32 1834730321
}
Reached problem!

Standard library based on
dietlibc. Special handling of
malloc and free to detect use-
after-free or double-free.

29 / 42

C++ Symbolic Execution

#include <owi.h>

struct IntPair {
 int x, y;
 int mean1() const {
 return (x & y) + ((x ^ y) >> 1);
 }
 int mean2() const {
 return (x + y) / 2;
 }
};

int main() {
 IntPair p{owi_i32(), owi_i32()};
 owi_assert(p.mean1() == p.mean2());
}

The subcommand owi c++ takes
care of compiling and linking:

$ owi c++ ./poly.cpp
Assert failure
model {
 symbol symbol_0 i32 -2147483648
 symbol symbol_1 i32 -2147483646
}
Reached problem!

Re-using the symbolic libc.

30 / 42

Rust Symbolic Execution

fn mean1(x: i32, y: i32) -> i32 {
 (x + y) / 2
}

fn mean2(x: i32, y: i32) -> i32 {
 (x & y) + ((x ^ y) >> 1)
}

fn main() {
 let x = owi_sym::u32_symbol() as i32;
 let y = owi_sym::u32_symbol() as i32;
 owi_sym::assert(mean1(x, y) == mean2(x, y))
}

The subcommand owi rust takes
care of compiling and linking:

$ owi rust ./main.rs
Assert failure
model {
 symbol symbol_0 i32 1073741835
 symbol symbol_1 i32 -2147483642
}
Reached problem!

Re-using the symbolic libc.

31 / 42

Zig symbolic execution

fn fibonacci(n: i32) i32 {
 if (n < 0) {
 @panic("expected a positive number");
 }
 if (n <= 2) return n;
 return fibonacci(n - 1) + fibonacci(n -
2);
}

pub fn main() void {
 const n: i32 = i32_symbol();
 assume(n > 0);
 assume(n < 10);
 const result = fibonacci(n);
 assert(result != 21);
}

The subcommand owi zig takes
care of compiling and linking:

$ owi zig ./fib.zig
owi: [ERROR] Assert failure
model {
 symbol symbol_0 i32 7
}
owi: [ERROR] Reached problem!

Re-using the symbolic libc.

Cross-language

33 / 42

Moving a Codebase from C to Rust

Original C version:

float dot_product(float x[2], float y[2]) {
 return (x[0]*y[0] + x[1]*y[1]);
}

New Rust version:

fn dot_product_rust(x: &[f32; 2], y: &[f32; 2]) -> f32 {
 x.iter().zip(y).map(|(xi, yi)| xi * yi).sum()
}

34 / 42

Is It Correct?

Owi says no:

model {
 symbol_0 f32 -0.
 symbol_1 f32 -0.
 symbol_2 f32 0.
 symbol_3 f32 0.
}

35 / 42

Breaking it Down

C version:

x[0] * y[0] + x[1] * y[1]

-0. * 0. + -0. * 0.

-0. + -0.

-0.

Rust version:

x.iter().zip(y).map(|(xi, yi)| xi * yi).sum()

[-0.,-0.].iter().zip([0.,0.]).map(|(xi,yi)|xi*yi).sum()

[(-0.,0.),(-0.,0.)].map(|(xi,yi)|xi*yi).sum()

[-0., -0.].sum()

+0. + -0. + -0.

+0.

▶ fixed in the Rust standard library
▶ initial accumulator for sum() is now -0.
▶ it broke typst (the tool used to make these slides) that was relying on this

behaviour

Solver-aided Programming

37 / 42

Polynomial Example

#include <owi.h>

void f(void) {
 int x = owi_i32();
 int x2 = x * x;
 int x3 = x * x * x;

 int a = 1; int b = -7;
 int c = 14; int d = -8;

 int poly =
 a * x3 + b * x2 + c * x + d;

 owi_assert(poly != 0);
}

This is similar to Rosette for Racket
(“solver-aided programming”) but:

▶ parallel
▶ multi/cross-language

We used it for :

▶ solving a maze
▶ generate a set of cards for dobble
▶ generate strongly regular graph with

parameters (9,4,1,2)
▶ generate music sheet for a string quartet

38 / 42

Music Generation

▶ limit on the
instruments’ range

▶ no crossing
▶ no leap of more than an

octave
▶ notes belongs to the

key
▶ the leading tone

resolves to the tonic
▶ instruments form

chords
▶ no parallel fifths or

octaves

39 / 42

Stuff I did not talked about

▶ the Smt.ml library
▶ automatic harness generation
▶ a fuzzer for Wasm interpreters
▶ iso-behaviour checker (to test Binaryen, the Wasm optimizer)
▶ we have support for symbolic runtime annotation checking of ACSL
▶ Weasel (WEbAssembly Specification Language)
▶ benchmarks (we are the best for Wasm, close to KLEE, the best one for C)
▶ concolic execution
▶ optimisations we have (path-condition independence, negation shortcut)

40 / 42

Current work by interns

▶ complex coverage-critera test-case generation (MCDC) (Saïd)
▶ better use of multi-solver (Félix)
▶ add heuristics to explore interesting paths first (Julie, starting two weeks)

41 / 42

Future work already funded

▶ abstract interpretation of Wasm
▶ map model back to complex source structures
▶ proper symbolic system interface (WASI, Componen Model, Common ABI)
▶ support missing proposals (SIMD, multi-memories, exceptions, memory64, GC)
▶ new languages: Haskell, TinyGo, OCaml, Guile, (maybe Dart, Java, Kotlin)
▶ build system integration (CC='owi clang', cargo owi)
▶ case study on real libraries (started to check Wayland stuff with emersion)
▶ add locations and source map support (if time permits)

If you have ideas, please tell me!

42 / 42

Conclusion

Owi is an efficient symbolic execution engine for Wasm, C, C++, Rust and Zig that
can perform cross-language analysis but can also be used as a Wasm toolkit for
developpers and researchers. We want to make it a real-world tool.

It is free software! You can try it at github.com/ocamlpro/owi . Documentation is
available at ocamlpro.github.io/owi . You must built it from sources to get most of
what I presented but I am preparing a new release.

We want to explore industrial applications and
welcome discussions with users interested in Owi, as
well as R&D on Wasm and programming languages.

https://github.com/ocamlpro/owi
https://ocamlpro.github.io/owi/

Bonus

44 / 42

The Smt.ml library

▶ provides a type of symbolic
expressions

▶ can map expressions to many SMT-
solver

▶ provides optimisations
(simplifications, cache through hash-
consing)

▶ ease of use (more typing)
▶ incremental mode

45 / 42

Iso-behaviour checker

Binaryen takes original.wasm and produces optimized.wasm.

To test their optimizations:
▶ a fuzzer that generates random original.wasm files
▶ compare output of original and optimized…
▶ … with 0, 1 and MAX_INT as input values

This is bad. I wrote owi iso original.wasm optimized.wasm so that all inputs are
considered.

Seems to work well, but I only did half of the work so that we can ask Google to
pay for the other half.

They’d also like to be able to verify optimisations with wasm-threads, we said we
can do it but they have to pay.

46 / 42

Automatic Harness Generation

void f(unsigned int x, unsigned int y) {
 // ... complicated stuff
}

void f_harness(void) {
 unsigned int x = owi_i32(); unsigned int y = owi_i32();
 f(x, y); }

It is annoying to write, so we have automatic harness generation:

void f(unsigned int x, unsigned int y) {
 // ... complicated stuff
}

$ owi c ./function_equiv.c --entry-point=f --invoke-with-symbols

No need to touch source code to test the program anymore!

Towards Proofs

48 / 42

ACSL

The ANSI/ISO C Specification Language (ACSL).

Allows to write function contracts:

/*@ requires precondition
 ensures postcondition
*/
int f(int n) { ... }

But also assertions, loop invariants, type invariants…

49 / 42

E-ACSL

The Executable subset of ACSL (E-ACSL).

/*@ requires n <= INT_MAX - 3;
 ensures \result == n + 3; */
int plus_three(int n) {
 return n + 3;
}

int __gen_e_acsl_plus_three(int n) {
 long __gen_e_acsl_at = (long)n;
 int __retres;
 { __e_acsl_assert_register_int(...);
 __e_acsl_assert(n <= 2147483644);
 __e_acsl_assert_clean(...); }
 __retres = plus_three(n);
 { __e_acsl_assert_register_int(...);
 __e_acsl_assert_register_long(...);
 __e_acsl_assert((long)__retres ==
__gen_e_acsl_at + 3L);
 __e_acsl_assert_clean(...); }
}

50 / 42

E-ACSL Support in Owi

We re-use the code generator from E-ACSL, but uses our own symbolic E-ACSL
runtime:

void __e_acsl_assert(int predicate, __e_acsl_assert_data_t *data) {
 owi_assert(predicate);
}

Available through owi c --e-acsl. It allows to symbolically execute code annotated
by specifications by generating executable assertions.

Described in our paper Cross-Language Symbolic Runtime Annotation Checking.
There we show how the subset of ACSL supported by E-ACSL can be extended
when targetting symbolic execution.

51 / 42

Weasel

We started to do the same in Wasm:

(module
 (@contract $plus_three
 (ensures (= result (+ $n 3))))
 (func $plus_three (param $n i32)
 (result i32)
 local.get $n
 i32.const 3
 i32.add
))

Design of Weasel (WEbAssembly SpEcification Language).

It uses the custom annotation syntax proposal.

52 / 42

Generating Assertions from Weasel

We did something similar to E-ACSL, still experimental :

(module
 (@contract $plus_three
 (ensures (= result (+ $n 3))))
 (func $plus_three (param $n i32)
(result i32)
 local.get $n
 i32.const 3
 i32.add
)
 (start $plus_three)
)

(import "symbolic" "assert"
 (func $assert (param i32)))
(func $__weasel_plus_three (param $n i32)
(result i32) (local $__weasel_temp i32)
(local $__weasel_res_0 i32)
 (call $plus_three (local.get 0))
 local.set 2
 (i32.eq (local.get 2) (i32.add (local.get
0) (i32.const 3)))
 call $assert
 local.get 2
)
(start $__weasel_plus_three)

53 / 42

What can we do with this?

Contrary to most symbolic execution engine, Owi does not perform any
approximation (modulo the source language compiler approximation wrt.
undefined behaviours).

When the analysis terminates, we’ve got a proof!

It could be used to proove programs or functions on its own.

It could also combined with:

▶ a deductive verification tool to automate the proof, or find counter-examples;
▶ an abstract interpretation engine to confirm or infirm bugs found.

Benchmarks

55 / 42

On Wasm Code

A hand-written Wasm B-Tree library with 27 possible configurations (number of
symbols):

Tool Min Max Mean
Owi-24 1.0 1.0 1.0
Owi-1 0.6 14.0 4.5
WASP 0.4 16.4 4.1

SeeWasm 2.5 101 57.1
Manticore 17.2 844 312

56 / 42

On C Code

1215 C programs from Test-Comp.

Tool Bug found Timeout Bug not found
KLEE 782 368 65
Owi 676 539 0

Symbiotic 489 657 69

Good results, especially when we know that Owi:
▶ does no approximation;
▶ has no optimisation appart from the multi-core;
▶ these are old benchmarks…

Most of the time is spent in the solver. What can we do about it?

57 / 42

One new optimisation: concolic execution

⊤ ⊥

mean < x

⊤ ⊥

mean < y mean ≥ x

trap mean ≥ y

▶ we begin with random values for symbols
▶ we keep the symbolic and concrete state
▶ no need to call the solver at each branch
▶ but we still keep the PC
▶ if we found a bug, we’re done
▶ otherwise, we start again but with values leading

to a new branch (we ask the SMT using our list of
PC)

This is what most engine are doing. AKA “dynamic symbolic execution”.

58 / 42

Another new optimisation: path-condition slicing

The PC contains many formulas unrelated to most branching conditions.

This is slowing-down the SMT-solver.

We use a union-find data-structure where keys are variables and nodes are set of
(related) constraints.

When meeting a new branch, we add the condition to the PC, then slice it, and only
send the slice to the solver.

	Outline
	The Story
	2015 - 2017
	August 2020
	September 2020
	October 2020 - September 2021
	October 2021 - December 2022
	Dagstuhl Mars 2023
	Dagstuhl Mars 2023
	Paris June 2023
	June - September 2023
	December 2024

	2. Technical stuff
	Outline
	Wasm 101
	Wasm 101
	Symbolic Execution 101
	Symbolic Execution 101
	Symbolic Execution 101
	Symbolic Execution 101
	From Concrete To Symbolic
	Step 1/2 : Abstract Over the Type of Values
	Step 2/2 : Abstract Over the Execution Strategy
	How is implemented the symbolic Choice monad?

	Fun stuff
	Multi-Language
	C Symbolic Execution
	C++ Symbolic Execution
	Rust Symbolic Execution
	Zig symbolic execution

	Cross-language
	Moving a Codebase from C to Rust
	Is It Correct?
	Breaking it Down

	Solver-aided Programming
	Polynomial Example
	Music Generation
	Stuff I did not talked about
	Current work by interns
	Future work already funded
	Conclusion

	Bonus
	The Smt.ml library
	Iso-behaviour checker
	Automatic Harness Generation

	Towards Proofs
	ACSL
	E-ACSL
	E-ACSL Support in Owi
	Weasel
	Generating Assertions from Weasel
	What can we do with this?

	Benchmarks
	On Wasm Code
	On C Code
	One new optimisation: concolic execution
	Another new optimisation: path-condition slicing

