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a fast, safe, portable compilation target
available since 2017 in browsers

used in cloud, edge, IoT, embedded systems...
C, C++ and Rust have a Wasm backend
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Abstract

The maturation of the Web platform has given rise to sophis-
ticated and demanding Web applications such as interactive
3D visualization, audio and video software, and games. With
that, efficiency and security of code on the Web has become
more important than ever. Yet JavaScript as the only built-
in language of the Web is not well-equipped to meet these
requirements, especially as a compilation target.

Engineers from the four major browser vendors have
risen to the challenge and collaboratively designed a portable
low-level bytecode called WebAssembly. It offers compact
representation, efficient validation and compilation, and safe
low to no-overhead execution. Rather than committing to a
specific programming model, WebAssembly is an abstrac-
tion over modern hardware, making it language-, hardware-,
and platform-independent, with use cases beyond just the
Web. WebAssembly has been designed with a formal se-
mantics from the start. We describe the motivation, design
and formal semantics of WebAssembly and provide some
preliminary experience with implementations.

CCS Concepts o Software and its engineering — Virtual
machines; Assembly 1 Runtime i
Just-in-time compilers

Keywords  Virtual hi progi ing as-
sembly languages, just-in-time compilers, type systems

1. Introduction

The Web began as a simple document exchange network but
has now become the most ubiquitous application platform

Michael Holman
Microsoft Inc, USA
michael holman@microsoft.com

JF Bastien

Apple Inc, USA
Jjfbastien@apple.com

device types. By historical accident, JavaScript is the only
natively supported programming language on the Web, its
widespread usage unmatched by other technologies avail-
able only via plugins like ActiveX, Java or Flash. Because
of JavaScript’s ubiquity, rapid performance improvements in
modern VMs, and perhaps through sheer necessity, it has be-
come a compilation target for other languages. Through Em-
scripten [43], even C and C++ programs can be compiled to
a stylized low-level subset of JavaScript called asm.js [4].
Yet JavaScript has inconsistent performance and a number
of other pitfalls, especially as a compilation target.
‘WebAssembly addresses the problem of safe, fast, portable
low-level code on the Web. Previous attempts at solving it,
from ActiveX to Native Client to asm.js, have fallen short of
properties that a low-level compilation target should have:

e Safe, fast, and portable semantics:

= safe to execute

= fast to execute

= language-, hardware-, and platform-independent

= deterministic and easy to reason about

= simple interoperability with the Web platform
o Safe and efficient representation:

= compact and easy to decode

= easy to validate and compile

= easy to generate for producers

= streamable and parallelizable

Why are these goals important? Why are they hard?

Safe Safety for mobile code is paramount on the Web,
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August 2020

Do you want to do a PhD thesis at
OCamlPro? What about compiling
OCaml to WebAssembly?

— Pierre Chambart
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September 2020

A PhD about compiling garbage-
collected languages to Wasm? I

don’t know what is Wasm but yes,
sure.

— Jean-Christophe Fillidtre
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October 2020 - September 2021

Waiting for french administration to
validate the PhD project. Took 1 year!
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October 2021 - December 2022

PhD finally started, in the first year:

» made Owi, a Wasm interpreter to learn and experiment
» made Wasocaml, an OCaml to Wasm compiler
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Dagstuhl Mars 2023

Presented Wasocaml, an OCaml to
Wasm compiler, and Owi was briefly
mentionned.

©SCHI.OSS DAGSTI.IHL LZ1 GMBH
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Dagstuhl Mars 2023

What about making a symbolic
interpreter with Owi?

— José Fragoso Santos (Assistant
Professor in Lisbon)
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Paris June 2023

» Filipe Marques is the PhD student of
José

» they made WASP, a Wasm concolic

interpreter based on the reference

interpreter

published at ECOOP

both came one week in Paris to tell

us about it

VY
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June - September 2023

Functorized and more #49 Ow1 is now

symbolic !
Edit <> Code ~

f~ Merged

zapashcanon merged 203 commits into (0Jon Sep 16, 2023

Conversation 1 Commits 203 ' Files changed

. chambart commented on Jun 21

Draft

®)
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December 2024

» I defended!

What happened in
between?

Answer after the

| Rapidité a détecter des bogues dans du code Wasm technical part!

es-B, avec 21 configurations différentes de symboles
coup de symboles). g
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2. Technical stuff



Outline

1. Wasm 101
2. Symbolic Execution 101
3. From concrete to symbolic
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Wasm 101

stack-based language;

simple types (i32, i64, f32, f64) ;

statically typed ([ i32 ; f32 1 -> [ i32 1);
functions ;

a formal semantics, with no undefined behabiour.

vvvyvVvyy
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Wasm 101

(module

(func $f (param $n 132) (result 132)
i [
(132.1t s (local.get $n) (i32.const 2)) ;; [ n < 2 |

(if (then i [ ]

local.get $n ;; [ n |

return )) ;; early return

75 I

(1i32.sub (local.get $n) (i32.const 2)) ;; [ n-2 |
call $f o [ f(n-2) ]
(132.sub (local.get $n) (i32.const 1)) ;; [ n-1; f(n-2) |
call $f vy [ f(n-1); f(n-2) ]
132.add o [ f(n-1) + f(n-2)]

;5 implicit return

))
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Symbolic Execution 101

A technique for:

» finding bugs in programs (and proving properties);
» implementing solver-aided programming;
» test-case generation.

Deductive verification
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Symbolic Execution 101

(func $mean (param $x i132) (param $y 132) -mean<X
(local $mean 132)

132.const 2 [ 2]
(132.add

(Llocal.get $x) (local.get $y)) ;; [ (x+y) ;
i32.div u v [o(x+y) /
local.set $mean [ ]

[
|

(132.1t _u (local.get $mean) (local.get $x))
(if (then
(132.1t u (local.get $mean) (local.get $y))
(1f (then unreachable ))))

local.get $mean)
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Symbolic Execution 101

(func $mean (param $x i132) (param $y 1i32) Unreachable
(Llocal $mean 132) model {
symbol x 2147483650
i32.const 2 s [ 2] symbol y 2147483655
(i32.add }
(Llocal.get $x) (local.get $y)) ;; [ (x+y) ; 2 1]
i32.div u o [ (x+y) /2] Indeed:
local.set $mean .
$ [ ] (XGBy)
(132.1t u (local.get %$mean) (local.get $x)) 2
(if (then 2147483650 @ 2147483655
(132.1t u (local.get $mean) (local.get $y)) — 9
(1f (then unreachable )))) 9
local.get $mean) 2
=4
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Symbolic Execution 101

We want to find input values leading to a state S.

input values are represented by symbols

the program executes with expressions made of concrete values + symbols
when branching both branches are explored

information about previous branches is kept in the path condition (PC)
when S is reached, a model is generated by an SMT solver from the PC

vvvyyvyy

This model corresponds to the input values leading to the state S.
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From Concrete To Symbolic

The initial Owi concrete interpreter:

match instr, stack with

| Binop Add, (x :: y :: stack) ->
(add 132 x y) :: stack
| If else (t, f), (b :: stack) ->

let b = bool of 132 b in
if b then eval t stack
else eval f stack

How to get a symbolic interpreter from this?
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Step 1/2 : Abstract Over the Type of Values

We use an abstract Value module:

match instr, stack with module type Value = sig

| Binop Add, (x ::y :: stack) -> type t
(Value.add i32 x y) :: stack val add i32 : t >t -> t

| If else (t, f), (b :: stack) -> type bool
let b = Value.bool of i32 b in val bool of i32 : t -> bool
if b then eval t stack end

else eval f stack
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Step 2/2 : Abstract Over the Execution Strategy

We use an abstract Choice module:

match instr, stack with module type Choice = sig

| Binop Add, (x ::y :: stack) -> type 'a t
(Value.add i32 x y) :: stack val return: 'a -> 'a t

| If else (t, f), (b :: stack) -> val bind: 'a t -> ('a -> 'b t) -> 'b t
let b = Value.bool of i32 b in val select: Value.bool -> bool t
(* the single new line: *) end

let* b = Choice.select cond in
if b then eval t stack
else eval f stack

» most of the code unchanged
» we must insert Choice.select and Choice.bind at branching point
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How is implemented the symbolic Choice monad?

It was hard. We rewrote it four times. Then...

Arthur Carcano implemented it nicely with:
» an error monad;

» a state monad;

» a coroutine monad.

Combined using three layered monad transformers.

The exploration is done in parallel thanks to OCaml 5!

Described in length in the paper.
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Fun stuff



Multi-Language



C Symbolic Execution

#include <owi.h> The subcommand owi c takes

. . , _ care of compiling and linking:
unsigned int meanl(unsigned int X,

unsigned int y) { $ owi c¢ ./function equiv.c
return (x &y) + ((x ~y) > 1); } Assert failure
model {
unsigned int mean2(unsigned int x, symbol 0 132 -922221680
unsigned int y) { symbol 1 132 1834730321
return (x +vy) / 2; } }

Reached problem!
void check(unsigned int x, unsigned int y) { .
owi assert(meanl(x, y) == mean2(x, y)); } Standard library based on

dietlibc. Special handling of
. , o malloc and free to detect use-
unsigned int x = owi 132();
unsigned int y = owi i32(): after-free or double-free.
check(x, y); } 28/ 42

void main(void) {



C++ Symbolic Execution

#include <owi.h>

struct IntPair {
int x, vy;
int meanl() const {
return (x & y) + ((x ~y) >> 1);
}
int mean2() const {
return (x +vy) / 2;
}
b ;

int main() {
IntPair p{owi 132(), owi 132()};
owi assert(p.meanl() == p.mean2());

}

The subcommand owi c++ takes
care of compiling and linking:

$ owi c++ ./poly.cpp
Assert failure
model {
symbol symbol 0 132 -2147483648
symbol symbol 1 i32 -2147483646
}

Reached problem!

Re-using the symbolic libc.
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Rust Symbolic Execution

fn meanl(x: 132, y: i32) -> 132 {
(x +vy) / 2
}

fn mean2(x: 132, y: 132) -> 132 {
(x &y) + ((x ~y) >1)
}

fn main() {
let x = owi sym::u32 symbol() as 132;
let y = owi sym::u32 symbol() as i32;
owi sym::assert(meanl(x, y) == mean2(x, y))

}

The subcommand owi rust takes
care of compiling and linking:

$ owi rust ./main.rs
Assert failure
model {
symbol symbol 0 i32 1073741835
symbol symbol 1 i32 -2147483642
}

Reached problem!

Re-using the symbolic libc.
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Zig symbolic execution

fn fibonacci(n: 132) 132 {
if (n < 0) {
@panic("expected a positive number");
}
if (n <= 2) return n;
return fibonacci(n - 1) + fibonacci(n -

pub fn main() void {
const n: 132 = 132 symbol();
assume(n > 0);
assume(n < 10);
const result = fibonacci(n);
assert(result '= 21);

The subcommand owi zig takes
care of compiling and linking:

$ owi zig ./fib.zig
owi: [ERROR] Assert failure
model {

symbol symbol 0 i32 7

}
owi: [ERROR] Reached problem!

Re-using the symbolic libc.
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Cross-language



Moving a Codebase from C to Rust

Original C version:

float dot product(float x[2], float y[2]) {
return (x[0]*y[0] + x[1]1*y[1]);
}

New Rust version:

fn dot product rust(x: &[f32; 2], y: &[f32; 2]) -> 32 {
x.iter().zip(y).map(|(xi, yi)| xi * yi).sum()

}
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Is [t Correct?

Ow1l says no:

model {
symbol 0 f32 -0.
symbol 1 32 -0.
symbol 2 f32 0.
symbol 3 f32 0.
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Preaking it Down

C version:

x[0] * y[0] + x[1] * y[1]
-0. * 0. + -0. * 0.
-0. + -0.

-0.

Rust version:

x.iter().zip(y).map(|(xi, yi)| xi * yi).sum()
[-0.,-0.].iter().zip([0.,0.]).map(](xi,yi)|xi*yi).sum()
[(-0.,0.),(-0.,0.)].map(|(xi,yi)|xi*yi).sum()

[-0., -0.].sum()

+0. + -0. + -0.

+0.

» fixed in the Rust standard library
» initial accumulator for sum() is now -0.
» it broke typst (the tool used to make these slides) that was relying on this

behaviour
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Solver-aided Programming



Polynomial Example

#include <owi.h>

void f(void) {
int x = owl 132();
int x2 = x * X;
int x3 = x * x * Xx;

int a 1;: int b = -7;
int ¢ = 14; int d = -8;

int poly =
a *x3+b*x2+c*x+d;

owi assert(poly != 0);

This is similar to Rosette for Racket
(“solver-aided programming’) but:

» parallel
» multi/cross-language

We used it for :

» solving a maze

» generate a set of cards for dobble

» generate strongly regular graph with
parameters (9,4,1,2)

» generate music sheet for a string quartet
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Music Generation
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Stuff | did not talked about

the Smt.ml library

automatic harness generation

a fuzzer for Wasm interpreters

iso-behaviour checker (to test Binaryen, the Wasm optimizer)

we have support for symbolic runtime annotation checking of ACSL
Weasel (WEbAssembly Specification Language)

benchmarks (we are the best for Wasm, close to KLEE, the best one for C)
concolic execution

optimisations we have (path-condition independence, negation shortcut)

VVvVVvVvVVVYVYYVYY
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Current work by interns

» complex coverage-critera test-case generation (MCDC) (Said)
» better use of multi-solver (Félix)

» add heuristics to explore interesting paths first (Julie, starting two weeks)
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Future work already funded

» abstract interpretation of Wasm

» map model back to complex source structures

» proper symbolic system interface (WASI, Componen Model, Common ABI)

» support missing proposals (SIMD, multi-memories, exceptions, memory64, GC)
» new languages: Haskell, TinyGo, OCaml, Guile, (maybe Dart, Java, Kotlin)

» build system integration (CC='owi clang', cargo owi)

» case study on real libraries (started to check Wayland stuff with emersion)

» add locations and source map support (if time permits)

If you have ideas, please tell me!
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Conclusion

Owi is an efficient symbolic execution engine for Wasm, C, C++, Rust and Zig that
can perform cross-language analysis but can also be used as a Wasm toolkit for
developpers and researchers. We want to make it a real-world tool.

It is free software! You can try it at github.com/ocamlpro/owi . Documentation is
available at ocamlpro.github.io/owi . You must built it from sources to get most of
what I presented but I am preparing a new release.

We want to explore industrial applications and
welcome discussions with users interested in Owi, as
well as R&D on Wasm and programming languages.

‘ 0Cam! )
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The Smtml library

Formula

Input | —
smt2

e )/

—» Output

Bindings

A
‘ Bindings |

Bindings

L=

Colibri2

VY

provides a type of symbolic
expressions

can map expressions to many SMT
solver

provides optimisations
(simplifications, cache through hash-
consing)

ease of use (more typing)
incremental mode
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Iso-behaviour checker

Binaryen takes original.wasm and produces optimized.wasm.

To test their optimizations:

» a fuzzer that generates random original.wasnm files
» compare output of original and optimized...

» ... with 0,1 and MAX INT as input values

This is bad. I wrote owi iso original.wasm optimized.wasm so that all inputs are
considered.

Seems to work well, but I only did half of the work so that we can ask Google to
pay for the other half.

They’d also like to be able to verify optimisations with wasm-threads, we said we

can do it but they have to pay.
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Automatic Harness Generation

void f(unsigned int x, unsigned int y) {
// ... complicated stuff
}

void f harness(void) {
unsigned int x = owi 132(); unsigned int y = owl 1i32();
f(x, y); }

It is annoying to write, so we have automatic harness generation:

void f(unsigned int x, unsigned int y) {
// ... complicated stuff
}

$ owi ¢ ./function equiv.c --entry-point=f --invoke-with-symbols

No need to touch source code to test the program anymore!
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Towards Proofs



ACSL

The ANSI/ISO C Specification Language (ACSL).

Allows to write function contracts:

/*@ requires precondition
ensures postcondition

*/

int f(int n) { ... }

But also assertions, loop invariants, type invariants...
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E-ACSL

The Executable subset of ACSL (E-ACSL).

int gen e acsl plus three(int n) {
long gen e acsl at = (long)n;
int  retres;

/*@ requires n <= INT MAX - 3; { e acsl assert register int(...);
ensures \result == n + 3; */ __e acsl assert(n <= 2147483644);
int plus three(int n) { e acsl assert clean(...); }
return n + 3; __retres = plus three(n);
} { e acsl assert register int(...);

e acsl assert register long(...);

e acsl assert((long) retres ==
__gen e acsl at + 3L);

e acsl assert clean(...); }

}
49 / 42



E-ACSL Support in Owi

We re-use the code generator from E-ACSL, but uses our own symbolic E-ACSL
runtime:

void e acsl assert(int predicate, e acsl assert data t *data) {
owl assert(predicate);

}

Available through owi ¢ --e-acsl.It allows to symbolically execute code annotated
by specifications by generating executable assertions.

Described in our paper Cross-Language Symbolic Runtime Annotation Checking.
There we show how the subset of ACSL supported by E-ACSL can be extended
when targetting symbolic execution.
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Weasel

We started to do the same in Wasm:

(module
(@contract $plus three
(ensures (= result (+ $n 3))))
(func $plus three (param $n 132)
(result 132)
local.get $n
132.const 3
132.add

))

Design of Weasel (WEbAssembly SpEcification Language).

It uses the custom annotation syntax proposal.
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Generating Assertions from Weasel

We did something similar to E-ACSL, still experimental :

(module (import "symbolic" "assert"
(@contract $plus three (func $assert (param 132)))
(ensures (= result (+ %$n 3)))) (func $ weasel plus three (param $n 132)
(func $plus three (param $n 132) (result 132) (local $ weasel temp 132)
(result 132) (local $ weasel res 0 132)
local.get $n (call $plus three (local.get 0))
i32.const 3 local.set 2
i32.add (132.eq (local.get 2) (i132.add (local.get
) 0) (i32.const 3)))
(start $plus three) call $assert
) local.get 2

)

(start $ weasel plus three)
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What can we do with this?

Contrary to most symbolic execution engine, Owi does not perform any
approximation (modulo the source language compiler approximation wrt.
undefined behaviours).

When the analysis terminates, we’ve got a proof!
It could be used to proove programs or functions on its own.
It could also combined with:

» a deductive verification tool to automate the proof, or find counter-examples;
» an abstract interpretation engine to confirm or infirm bugs found.
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Renchmarks



On Wasm Code

A hand-written Wasm B-Tree library with 27 possible configurations (number of

symbols):

Tool Min | Max|Mean
Owi-24 (1.0 1.0] 1.0
Owi-1 0.6 |14.0| 4.5
WASP 0.4 116.4| 4.1
SeeWasm | 2.5 | 101 | 57.1
Manticore|17.2| 844 | 312
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On C Code

1215 C programs from Test-Comp.

Tool Bug found [ Timeout | Bug not found

KLEE 182 368 65

Owi 676 539 0
Symbiotic 489 657 69

Good results, especially when we know that Owi:

» does no approximation;

» has no optimisation appart from the multi-core;

» these are old benchmarks...

Most of the time is spent in the solver. What can we do about it?
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One new optimisation: concolic execution

we begin with random values for symbols

we keep the symbolic and concrete state

no need to call the solver at each branch

but we still keep the PC

if we found a bug, we’re done

otherwise, we start again but with values leading

trap mean 2 y to a new branch (we ask the SMT using our list of
PC)

mean < Xx

mean <y mean = x

vvvyvVvyyVvyy

This is what most engine are doing. AKA “dynamic symbolic execution”.
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Another new optimisation: path-condition slicing

The PC contains many formulas unrelated to most branching conditions.
This is slowing-down the SMT-solver.

We use a union-find data-structure where keys are variables and nodes are set of
(related) constraints.

When meeting a new branch, we add the condition to the PC, then slice it, and only
send the slice to the solver.
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