Ow1: cross-language symbolic
execution for bug-finding and solver-
alded programming

Léo Andres, Pierre Chambart,
Arthur Carcano, Zhicheng Hui @ OCamlPro

Filipe Marques @ University of Lisbon

With contributions from Eric Patrizio, Olivier Pierre, Vasu Singh, Basile Clément,
Hichem Rami Ait El Hara, Dario Pinto, Neha Chriss, Frederico Ramos, Jean-
Christophe Fillidtre, José Fragoso Santos

13" of February, 2025 — PPS Seminar

Context

HTML
World Wide Web

The WorldWideWeb (W3) is a wide-area_hypermedia information retrieval initiative aiming to give universal access to a large universe of documents.

Everything there is online about W3 is linked directly or indirectly to this document, including an executive su ry of the project, Mailing lists , Policy , November's W3 news , Frequently Asked Questions .

at's out there?
Pointers to the world's online information, sub
Help
on the browser you are using

A list of W3 project components and their current state. (e.g. Line Mode ,X11 Viola , NeXTStep , Servers , Tools , Mail robot , Library
Technical
ils of protocols, formats, program internals etc

Paper documentation on W3 and references.
People
A list of some people involved in the project.

f the project.
How can I helg
If you would like to support the web..
Getting code
Getting the code by anonymous FTP , etc.

3/ 55

HTML

WIKIPEDIA

v
/' The Free Encyclopedia

Contents

(Top)
Syntax
Style sheet
Selector
Selector types
Pseudo-classes
Combinators

Summary of selector
syntax

Declaration block
Declaration
Properties
Values

Use

Sources
Multiple style sheets
Cascading

CSS priority
scheme

Specificity
Examples

Inheritance

‘ Q Search Wikipedia Search

CSS M 92 languages Vv

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

This article is about the markup styling language. For other uses, see CSS (disambiguation).
"Pseudo-element” redirects here. For pseudoelement symbols in chemistry, see Skeletal formula § Pseudoelement symbols.

&) This article needs to be updated. Please help update this article to reflect recent events
or newly available information. (November 2024)

Cascading Style Sheets (CSS) is a style sheet language used for specifying the Cascading Style Sheets (CSS)
presentation and styling of a document written in a markup language such as
HTML or XML (including XML dialects such as SVG, MathML or XHTML).[? CSS is a

cornerstone technology of the World Wide Web, alongside HTML and JavaScript.[3]

CSS is designed to enable the separation of content and presentation, including

layout, colors, and fonts.[] This separation can improve content accessibility, since Icon for CS53[1)
the content can be written without concern for its presentation; provide more

flexibility and control in the specification of presentation characteristics; enable

multiple web pages to share formatting by specifying the relevant CSS in a

separate .css file, which reduces complexity and repetition in the structural

content; and enable the .css file to be cached to improve the page load speed

between the pages that share the file and its formatting.

Separation of formatting and content also makes it feasible to present the same
markup page in different styles for different rendering methods, such as on-
screen, in print, by voice (via speech-based browser or screen reader), and on

Braille-based tactile devices. CSS also has rules for alternate formatting if the
xample of CSS source code

content is accessed on a mobile device.[>])
Filename .CSS

extension

Donate Create account Log.in

4 /55

The Web client-side: JavaScript

HTML

5/ 55

The Web client-side: JavaScript

HTML

5/ 55

The Web client-side: JavaScript

HTML

5/ 55

The Web client-side: JavaScript

HTML

5/ 55

The Web client-side: JavaScript

HTML

5/ 55

JavaScript Downsides

JavaScript is hard:

» as a programming language: we want to use other languages;
» as a compilation target: we need another compilation target.

Consensus to provide an alternative that is:

» fast

» safe

» portable

» a good compilation target

6 /55

» announced in 2015
» available since 2017 in
browsers

» today, many languages can compile
to Wasm: C, C++, Rust, OCaml, Java,
Guile, Go, Haskell

» ttis used for server deployments (a
lot) and embedded

Bringing the Web up to Speed with WebAssembly

Andreas Haas Andreas Rossberg Derek L. Schuff* Ben L. Titzer Michael Holman

Google GmbH, Germany / *Google Inc, USA Microsoft Inc, USA

{ahaas,rossberg,dschuff, titzer } @google.com

michael.holman@microsoft.com

Dan Gohman Luke Wagner Alon Zakai JF Bastien

Mozilla Inc, USA

{sunfishcode, luke,azakai }@mozilla.com

Abstract

The maturation of the Web platform
ticated and demanding Web applications such as interactive
ization, audio and video software, and games. With
y ity of code on the Web has become
more important than ever. Yet JavaScript as the only built-
in language of the Web is not well-equipped to meet these
requirements, especi; compilation target.

Engineers from the four major browser vendors have
risen to the challenge and collaboratively designed a portable
low-level bytecode called WebAssembly. It offers compact

ion, efficient validation and compilation, and safe
low to no-overhead execution. Rather than committing to a
ific programming model, WebAssembly i
tion over modern hardware, making it language-, hardware-,
and platform-independent, with use beyond just the
Web. WebAssembly has been designed with a formal se-
manti m the start. We de:
and formal semantics of WebAssembly and provide some
preliminary experience with implementations.

CCS Concepts e Software and its engineering — Virtual
machines; Assembly languages; Runtime environments;
Just-in-time compilers

Keywords Virtual machines, programming languages
sembly languages, just-in-time compile;

1. Introduction

The Web began as a simple document exchange network but
has now become the most ubiquitous application platform

Apple Inc, USA
jfbastien@apple.com

device types. By historical accident, JavaScript is the only
ively supported programming language on the Web
pread usage unmatched by other technologie:
able only via plugins like / 2 Becau
of JavaScript’s ubiquity, rapid performance improvements in
modern VM: 2 oug sity, it has be-
Through Em-
E an be compiled to
a stylized low-level set 0 cript called a:
Yet JavaScript has i ent performance and a number
of other pitfalls, e: i compilation target.
‘WebAssemb] sses the problem of safe, fast, portable
low-level code on the Web. Previ attempts at solving it,
from ActiveX to Native Client to asm.js, have fallen short of
properties that a low-level compilation target should have:

 Safe, fast, and portable semantics:
afe to execute
= fast to execute
= language-, hardware-, and platform-independent
i / to reason about
= simple interoperability with the Web platform
* Safe
ompact
sy to ate and compile
y to generate for produ
= streamable and parallelizable

Why are these goals important? Why are they har

1/55

Outline

introduction to Wasm

Owi as a Wasm toolkit

symbolic execution in a nutshell

. from a concrete to a parallel symbolic interpreter
C, C++ and Rust symbolic execution
cross-language bug-finding

solver-aided programming

towards proofs

benchmarks

S

8/ 55

Introduction to Wasm

Wasm 1.0 (2017)

stack-based language;

simple types (i32, i64, 32, f64) ;

statically typed ([i32 ; f32 1 -> [i32 1);
functions ;

a linear memory (an array of bytes) ;

possibility to import and export functions;

a formal semantics, with no undefined behabiour.

vVvvyvVvyvVvyvyy

Wasm 2.0 (2022) Non-trapping float-to-int conversion, Sign-extension operators,
Multi-value, Bulk memory operations, Fixed-width SIMD...

Wasm 3.0 (2024/2025) Typed Function References, Tail Call, Garbage Collection,
Exception handling...

10 / 55

Example of a Wasm Program

(module

(func $f (param $n i32) (result 132)
vr [
(1i32.1t s (local.get $n) (i32.const 2)) ;; [n < 2 |

(if (then A

local.get $n ;; [n |

return)) ;; early return

5E L)

(132.sub (local.get $n) (i32.const 2)) ;; [n-2 |
call $f i [f(n-2)]
(132.sub (local.get $n) (i32.const 1)) ;; [n-1; f(n-2) |
call $f ;3 [f(n-1); f(n-2)]
i32.add ;o [f(n-1) + f(n-2)]

;5 implicit return

))

11/ 55

Linear Memory

(module
(memory 1) ;; initial size of 1 page
(func $f (param $addr i32) (result f32)
AN
local.get $addr ;; [addr |

i32.const 4 ;7 [4; addr]
i32.mul ;7 [4 * addr]
f32.load ;7 [float(memory[4 * addr]) 1]

12 / 55

Host Interactions

(module
(import "stdlib" "print 132" (func $print i32 (param i32)))
(func $f
vr L
i32.const 42 i [42]
call $print 132 ;; [] ; 42 1is printed

)

13/ 55

Owi as a Wasm toolkit

Owi'

Ow1i is a Wasm interpreter written in OCaml.
Initially, it was made to:

» learn Wasm;
» experiment with proposals needed to compile OCaml to Wasm.

But it ended-up being well-tested and supporting all of Wasm...

15/ 55

List of Subcommands

Ow1i provides many commands to work with Wasm:

VVVVVVYYVYY

owl
owi
owi
owl
owil
owil
owl
owi

fmt

opt

run
script
validate
version
wasm2wat
wat2wam

16 / 55

Supported extensions

Extension
Import/Export of Mutable Globals
Non-trapping float-to-int conversions
Sign-extension operators
Multi-value
Reference Types
Bulk memory operations
Fixed-width SIMD

Tail calls
Typed Function References

GC

Custom Annotation Syntax in the Text Format
Extended Constant Expressions
Exception handling

Status

KX X NN NN

17/ 55

DOO0

g

© SCHLOSS DAGSTUHL - LZI GMBH
licensed under Creative Commons License CC BY-NC-ND*

In March 2023, I was giving a talk about
Wasocaml, an OCaml to Wasm
compiler, and briefly mentionned Owi.

What about making a symbolic
interpreter with Owi?

— José Fragoso Santos (Assistant
Professor in Lisbon)

Problem:I don’t really know what
symbolic execution is...

18 / 55

Symbolic Execution in a Nutshell

Symbolic Execution Purposes

A technique for:

» finding bugs in programs (and proving properties);
» implementing solver-aided programming;
» test-case generation.

Deductive verification

Complete ‘

Abstract interpretation

20/ 55

Core ideas

We want to find input values leading to a state S.

input values are represented by symbols

the program executes with expressions made of concrete values + symbols
when branching both branches are explored

information about previous branches is kept in the path condition (PC)
when S is reached, a model is generated by an SMT solver from the PC

vvVvyyvyy

This model corresponds to the input values leading to the state S.

21 /55

unsigned int mean(unsigned int x,
unsigned int y) {

unsigned int mean = (x +vy) / 2;
1f (mean < x) {
if (mean < y) { assert(false); }

}

return mean;

22/ 55

Symbols, harness and model

unsigned int mean(unsigned int X,
unsigned int y) {

unsigned int mean = (x + vy) / 2;
1f (mean < x) {
if (mean < y) { assert(false); }

}

return mean;

}

void harness(void) {
unsigned int x = symbol int(),
y = symbol int();
mean(x, Yy);

}

Assert failure

model {
symbol x 2147483650
symbol y 2147483655

}
Indeed:
(x@y)
2
2147483650 @ 2147483655
. 2
_ 9
2
— 4

23/ 55

From a Concrete to a Parallel

Symbolic Interpreter

Owi's Old Concrete Interpreter

Initially, something like:

match instr, stack with
Binop Add , X 11y :: stack -> (add i32 x vy)
| If else (t, f), cond :: stack ->
let cond = bool of i32 cond in
if cond then eval t stack
else eval f stack

How to get a symbolic interpreter from this?

:: stack

25/ 55

Step 1/2 : Abstract Over the Type of Values

module type Value = sig | Binop Add, x :: y :: stack ->
type t (Value.add i32 x y) :: t
val add i32 : t -> t -> t | If else (if t, if f), cond :: stack ->
type bool let cond = Value.bool of i32 cond in
val bool of 132 : t -> bool if cond then eval if t stack

end else eval if f stack

Definition of type t can change :

» concrete case :a concrete value (42)
» symbolic case : a symbolic expression (x < 42 &'y = x || y = 22)

What is our expression language?

26 / 55

» provides a type of symbolic
expressions
» can map expressions to many SMT-
Fo&Eula solver
» provides optimisations
(simplifications, cache through hash-
consing)

\ 4

ease of use (more typing)
incremental mode

v

27/ 55

Step 2/2 : Abstract Over the Execution Strategy

module type Choice = sig | If else (if t, if f), cond::stack ->
type 'a t let cond = Value.bool of i32 cond in
val return: 'a -> 'a t (* the single new line: *)

val bind: 'a t -> ('a -> 'b t) -> 'b t let* cond = Choice.select cond in
val select: Value.bool -> bool t if cond then eval if t stack
end else eval if f stack

» most of the code unchanged
» we must insert Choice.select and Choice.bind at branching point

The definition of Choice can change :
» concrete case: identity monad
» symbolic case, it must:

B evaluates both branches

B store the state (Wasm and PC)
28 / 55

Parallel, Symbolic, Choice Monad Implementation

Symbolic implementation is an actual choice monad made of:
» an error monad;

» a state monad;
» a coroutine monad.

Branches are explored in parallel thanks to OCaml 5!

29 / 55

Want More Details?

Described in our journal article: Owi: Performant Parallel Symbolic Execution
Made Easy, an Application to WebAssembly.

30/ 55

Simple Wasm example

(module
(import "symbolic" "i32 symbol"
(func $sym 132 (result i32)))

(func $start (local $x 132)
(Llocal.set $x (call $sym i32))
(if

(132.1t s
(132.const 5)
(local.get $x))

(then unreachable)))

(start $start)

Then, simply use owi sym:

$ owi sym file.wat
Trap: unreachable
model {

symbol symbol 0 132 6
}

Reached problem!
We also have:

» owi conc for concolic execution;

» owi replay to re-run and replace
symbols by concrete values from a
model.

31 /55

C. C++ and Rust Symbolic

Execution

C Symbolic Execution

#include <owi.h> The subcommand owi c takes

. . , _ care of compiling and linking:
unsigned int meanl(unsigned int X,

unsigned int y) { $ owi c¢ ./function equiv.c
return (x & y) + ((x ~y) > 1); Assert failure
} model {
symbol 0 132 -922221680
unsigned int mean2(unsigned int X, symbol 1 132 1834730321
unsigned int y) { }
return (x +vy) / 2; Reached problem!

}
Standard library based on

void main(void) { dietlibc. Special handling of
Un'stgned ENEEXS =S oW R 32100 malloc and free to detect use-
unsigned int y = owi 132();
after-free or double-free.

owi assert(meanl(x, y) == mean2(x, y)); }
33/ 55

C++ Symbolic Execution

#include <owi.h>

struct IntPair {
int x, y;
int meanl() const {
return (x & y) + ((x ~y) >> 1);
}
int mean2() const {
return (x +vy) / 2;
}
b

int main() {
IntPair p{owi 132(), owi 132()};
owi assert(p.meanl() == p.mean2());

}

The subcommand owi cpp takes
care of compiling and linking:

$ owi c++ ./poly.cpp
Assert failure
model {
symbol symbol 0 132 -2147483648
symbol symbol 1 i32 -2147483646
}

Reached problem!

Re-using the symbolic libc.

34 / 55

Rust Symbolic Execution

fn meanl(x: 132, y: i32) -> 132 {
(x +vy) / 2
}

fn mean2(x: i32, y: 132) -> i32 {
(x &y) + ((x ~y) >1)
}

fn main() {
let x = owi sym::u32 symbol() as 132;
let y = owi sym::u32 symbol() as 132;
owi sym::assert(meanl(x, y) == mean2(x, y))

}

The subcommand owi rust takes
care of compiling and linking:

$ owi rust ./main.rs
Assert failure
model {
symbol symbol 0 i32 1073741835
symbol symbol 1 i32 -2147483642
}

Reached problem!

Re-using the symbolic libc.

35/ 55

Cross-Language Bug-Finding

Moving a Codebase from C to Rust

Original C version:

float dot product(float x[2], float y[2]) {
return (x[0]1*y[0] + x[1]1*y[1]);
}

New Rust version:

fn dot product rust(x: &[f32; 2], y: &[f32; 2]) -> 32 {
x.iter().zip(y).map(|(xi, yi)| xi * yi).sum()

}

37/ 55

Is [t Correct?

Ow1l says no:

model {
symbol 0 f32 -0.
symbol 1 32 -0.
symbol 2 f32 0.
symbol 3 f32 0.

38 / 55

Preaking it Down

C version:

x[0] * y[0] + x[1] * y[1]
-0. * 0. + -0. * 0.
-0. + -0.

-0.

Rust version:

x.iter().zip(y).map(|(xi, yi)| xi * yi).sum()
[-0.,-0.].iter().zip([0.,0.]).map(](xi,yi)|xi*yi).sum()
[(-0.,0.),(-0.,0.)].map(|(xi,yl)|xi*yi).sum()

[-0., -0.].sum()

+0. + -0. + -0.

+0.

» fixed in the Rust standard library
» initial accumulator for sum() is now -0.
» it broke typst (the tool used to make these slides) that was relying on this

behaviour

39 / 55

Solver-Aided Programming

Polynomial Example

#include <owi.h>

class Poly {
private: int poly;
public:
Poly(int a, int b, int c, int d){
int x = owi 132();
int x2 = x * x;
int x3 = x2 * x;
poly = a*x3 + b*x2 + ¢c*x + d; }
int hasRoot() const {
return poly == 0; } };

int main() {
Poly p(1, -7, 14, -8);
owi assert(not(p.hasRoot())); }

This is similar to Rosette for Racket
(“solver-aided programming’) but:

» parallel
» multi/cross-language

We used it for :

» solving a maze

» generate a set of cards for dobble

» generate strongly regular graph with
parameters (9,4,1,2)

» generate music sheet for a string quartet

41 /55

-’-I'_--—

V‘ 1 1 A bhl ¢ & &F |
noon 1A v p €
I

Y /.

. \ b | e o |
Violon 2 l'(‘.mzm_ p
Ny | |

o;
=
iii"
i
I
IIII
i
il
IIII
IR
'!I|
A
II’
|

]
9
i

Violoncelle—

VY

limit on the
instruments’ range
Nno crossing

no leap of more than an
octave

notes belongs to the
key

the leading tone
resolves to the tonic
instruments form
chords

no parallel fifths or

octaves 3

Towards Proofs

ACSL

The ANSI/ISO C Specification Language (ACSL).

Allows to write function contracts:

/*@ requires precondition
ensures postcondition

*/

int f(int n) { ... }

But also assertions, loop invariants, type invariants...

44 / 55

E-ACSL

The Executable subset of ACSL (E-ACSL).

int _gen e acsl plus three(int n) {
long gen e acsl at = (long)n;
int retres;

/*@ requires n <= INT MAX - 3; { e acsl assert register int(...);
ensures \result == n + 3; */ e acsl assert(n <= 2147483644);
int plus three(int n) { e acsl assert clean(...); }
return n + 3; __retres = plus three(n);
} { e acsl assert register int(...);

e acsl assert register long(...);

e acsl assert((long) retres ==
__gen e acsl at + 3L);

e acsl assert clean(...); }

}
45/ 55

E-ACSL Support in Owi

We re-use the code generator from E-ACSL, but uses our own symbolic E-ACSL
runtime:

void e acsl assert(int predicate, e acsl assert data t *data) {
owl assert(predicate);

}

Available through owi ¢ --e-acsl.It allows to symbolically execute code annotated
by specifications by generating executable assertions.

Described in our paper Cross-Language Symbolic Runtime Annotation Checking.
There we show how the subset of ACSL supported by E-ACSL can be extended
when targetting symbolic execution.

46 / 55

Weasel|

We started to do the same in Wasm:

(module
(@contract $plus three
(ensures (= result (+ $n 3))))
(func $plus three (param $n i32)
(result i132)
local.get $n
132.const 3
132.add

))

Design of Weasel (WEbAssembly SpEcification Language).

It uses the custom annotation syntax proposal.

47 / 55

Generating Assertions from Weasel

We did something similar to E-ACSL, still experimental :

(module (import "symbolic" "assert"
(@contract $plus three (func $assert (param i32)))
(ensures (= result (+ %$n 3)))) (func $ weasel plus three (param $n i32)
(func $plus three (param $n 132) (result i32) (local $ weasel temp 1i32)
(result 132) (local $ weasel res 0 i32)
local.get $n (call $plus three (local.get 0))
i32.const 3 local.set 2
i32.add (132.eq (local.get 2) (i32.add (local.get
) 0) (i32.const 3)))
(start $plus three) call $assert
) local.get 2

)

(start $ weasel plus three)

48 / 55

What can we do with this?

Contrary to most symbolic execution engine, Owi does not perform any
approximation (modulo the source language compiler approximation wrt.
undefined behaviours).

When the analysis terminates, we’ve got a proof!
It could be used to proove programs or functions on its own.
It could also combined with:

» a deductive verification tool to automate the proof, or find counter-examples;
» an abstract interpretation engine to confirm or infirm bugs found.

49 / 55

Renchmarks

On Wasm Code

A hand-written Wasm B-Tree library with 27 possible configurations (number of
symbols):

Tool Min Max Mean
Owi-24 1.0 1.0 1.0
Owi-1 0.6 14.0 4.5
WASP 0.4 164 4.1
SeeWasm 2.5 101 57.1
Manticore 17.2 844 312

51 /55

On C Code

1215 C programs from Test-Comp.

Tool Bug found Timeout Bug not found

KLEE 782 368 65
Owi 676 539 0
Symbiotic 489 657 69

Good results, especially when we know that Owi:
» does no approximation;

» has no optimisation appart from the multi-core;
» these are old benchmarks...

Most of the time is spent in the solver. What can we do about it?

52 / 55

we begin with random values for symbols
we keep the symbolic and concrete state
no need to call the solver at each branch
but we still keep the PC

if we found a bug, we’re done

vvvyvVvyvyy

otherwise, we start again but with values leading

to a new branch (we ask the SMT using our list of
PC)

This is what most engine are doing. AKA “dynamic symbolic execution”.

53 / 55

Another new optimisation: path-condition slicing

The PC contains many formulas unrelated to most branching conditions.
This is slowing-down the SMT-solver.

We use a union-find data-structure where keys are variables and nodes are set of
(related) constraints.

When meeting a new branch, we add the condition to the PC, then slice it, and only
send the slice to the solver.

54 / 55

Current goals

support Wasm GC to handle Java, OCaml and Guile

add heuristics to explore interesting paths first

proper symbolic system interface

automatic harness generation

complex coverage-critera test-case generation (MCDC)
better error reporting (editor integration)

vVvvyvVvyvyy

We want to explore industrial applications and

@ Ocam] m welcome discussions with users interested in Owi, as
well as R&D on Wasm and programming languages.
We are welcoming interns and can co-supervize PhD

students.
55/ 55

Ponus

No bonus this time!

57 / 55

	Context
	The Web client-side: HTML
	The Web client-side: CSS
	The Web client-side: JavaScript
	The Web client-side: JavaScript
	The Web client-side: JavaScript
	The Web client-side: JavaScript
	The Web client-side: JavaScript
	JavaScript Downsides
	WebAssembly (Wasm)
	Outline

	Introduction to Wasm
	Wasm 1.0 (2017)
	Example of a Wasm Program
	Linear Memory
	Host Interactions

	Owi as a Wasm toolkit
	Owi?
	List of Subcommands
	Supported extensions
	Dagstuhl Mars 2023

	Symbolic Execution in a Nutshell
	Symbolic Execution Purposes
	Core ideas
	Execution Tree
	Symbols, harness and model

	From a Concrete to a Parallel Symbolic Interpreter
	Owi's Old Concrete Interpreter
	Step 1/2 : Abstract Over the Type of Values
	The Smt.ml Library
	Step 2/2 : Abstract Over the Execution Strategy
	Parallel, Symbolic, Choice Monad Implementation
	Want More Details?
	Simple Wasm example

	C, C++ and Rust Symbolic Execution
	C Symbolic Execution
	C++ Symbolic Execution
	Rust Symbolic Execution

	Cross-Language Bug-Finding
	Moving a Codebase from C to Rust
	Is It Correct?
	Breaking it Down

	Solver-Aided Programming
	Polynomial Example
	Music Generation

	Towards Proofs
	ACSL
	E-ACSL
	E-ACSL Support in Owi
	Weasel
	Generating Assertions from Weasel
	What can we do with this?

	Benchmarks
	On Wasm Code
	On C Code
	One new optimisation: concolic execution
	Another new optimisation: path-condition slicing
	Current goals

	Bonus
	No bonus this time!

