
Owi: cross-language symbolic
execution for bug-finding and solver-

aided programming

Léo Andrès, Pierre Chambart,
Arthur Carcano, Zhicheng Hui @ OCamlPro

Filipe Marques @ University of Lisbon
With contributions from Eric Patrizio, Olivier Pierre, Vasu Singh, Basile Clément,

Hichem Rami Ait El Hara, Dario Pinto, Neha Chriss, Frederico Ramos, Jean-
Christophe Filliâtre, José Fragoso Santos

13th of February, 2025 – PPS Seminar

Context

3 / 55

The Web client-side: HTML

4 / 55

The Web client-side: CSS

5 / 55

The Web client-side: JavaScript

5 / 55

The Web client-side: JavaScript

5 / 55

The Web client-side: JavaScript

5 / 55

The Web client-side: JavaScript

5 / 55

The Web client-side: JavaScript

6 / 55

JavaScript Downsides

JavaScript is hard:

▶ as a programming language: we want to use other languages;
▶ as a compilation target: we need another compilation target.

Consensus to provide an alternative that is:

▶ fast
▶ safe
▶ portable
▶ a good compilation target

7 / 55

WebAssembly (Wasm)

▶ announced in 2015
▶ available since 2017 in

browsers

▶ today, many languages can compile
to Wasm: C, C++, Rust, OCaml, Java,
Guile, Go, Haskell

▶ tt is used for server deployments (a
lot) and embedded

8 / 55

Outline

1. introduction to Wasm
2. Owi as a Wasm toolkit
3. symbolic execution in a nutshell
4. from a concrete to a parallel symbolic interpreter
5. C, C++ and Rust symbolic execution
6. cross-language bug-finding
7. solver-aided programming
8. towards proofs
9. benchmarks

Introduction to Wasm

10 / 55

Wasm 1.0 (2017)

▶ stack-based language;
▶ simple types (i32, i64, f32, f64) ;
▶ statically typed ([i32 ; f32] -> [i32]);
▶ functions ;
▶ a linear memory (an array of bytes) ;
▶ possibility to import and export functions;
▶ a formal semantics, with no undefined behabiour.

Wasm 2.0 (2022) Non-trapping float-to-int conversion, Sign-extension operators,
Multi-value, Bulk memory operations, Fixed-width SIMD…

Wasm 3.0 (2024/2025) Typed Function References, Tail Call, Garbage Collection,
Exception handling…

11 / 55

Example of a Wasm Program

(module

 (func $f (param $n i32) (result i32)
 ;; []
 (i32.lt_s (local.get $n) (i32.const 2)) ;; [n < 2]
 (if (then ;; []
 local.get $n ;; [n]
 return)) ;; early return
 ;; []
 (i32.sub (local.get $n) (i32.const 2)) ;; [n-2]
 call $f ;; [f(n-2)]
 (i32.sub (local.get $n) (i32.const 1)) ;; [n-1; f(n-2)]
 call $f ;; [f(n-1); f(n-2)]
 i32.add ;; [f(n-1) + f(n-2)]
 ;; implicit return
))

12 / 55

Linear Memory

(module
 (memory 1) ;; initial size of 1 page
 (func $f (param $addr i32) (result f32)
 ;; []
 local.get $addr ;; [addr]
 i32.const 4 ;; [4; addr]
 i32.mul ;; [4 * addr]
 f32.load ;; [float(memory[4 * addr])]
)
)

13 / 55

Host Interactions

(module
 (import "stdlib" "print_i32" (func $print_i32 (param i32)))
 (func $f
 ;; []
 i32.const 42 ;; [42]
 call $print_i32 ;; [] ; 42 is printed
)
)

Owi as a Wasm toolkit

15 / 55

Owi?

Owi is a Wasm interpreter written in OCaml.

Initially, it was made to:

▶ learn Wasm;
▶ experiment with proposals needed to compile OCaml to Wasm.

But it ended-up being well-tested and supporting all of Wasm…

16 / 55

List of Subcommands

Owi provides many commands to work with Wasm:

▶ owi fmt

▶ owi opt

▶ owi run

▶ owi script

▶ owi validate

▶ owi version

▶ owi wasm2wat

▶ owi wat2wam

17 / 55

Supported extensions

Extension Status
Import/Export of Mutable Globals ✔

Non-trapping float-to-int conversions ✔
Sign-extension operators ✔

Multi-value ✔
Reference Types ✔

Bulk memory operations ✔
Fixed-width SIMD ❌

Tail calls ✔
Typed Function References ✔

GC ❌

Custom Annotation Syntax in the Text Format ✔
Extended Constant Expressions ✔

Exception handling ❌

18 / 55

Dagstuhl Mars 2023

In March 2023, I was giving a talk about
Wasocaml, an OCaml to Wasm
compiler, and briefly mentionned Owi.

What about making a symbolic
interpreter with Owi?

— José Fragoso Santos (Assistant
Professor in Lisbon)

Problem: I don’t really know what
symbolic execution is…

Symbolic Execution in a Nutshell

20 / 55

Symbolic Execution Purposes

A technique for:

▶ finding bugs in programs (and proving properties);
▶ implementing solver-aided programming;
▶ test-case generation.

Complete Sound

Automatic
Symbolic execution Abstract interpretation

Deductive verification

21 / 55

Core ideas

We want to find input values leading to a state 𝑆.

▶ input values are represented by symbols
▶ the program executes with expressions made of concrete values + symbols
▶ when branching both branches are explored
▶ information about previous branches is kept in the path condition (PC)
▶ when 𝑆 is reached, a model is generated by an SMT solver from the PC

This model corresponds to the input values leading to the state 𝑆.

22 / 55

Execution Tree

unsigned int mean(unsigned int x,
 unsigned int y) {

 unsigned int mean = (x + y) / 2;
 if (mean < x) {
 if (mean < y) { assert(false); }
 }
 return mean;
}

⊤ ⊥

mean < x

⊤ ⊥

mean < y mean ≥ x

trap mean ≥ y

23 / 55

Symbols, harness and model

unsigned int mean(unsigned int x,
 unsigned int y) {

 unsigned int mean = (x + y) / 2;
 if (mean < x) {
 if (mean < y) { assert(false); }
 }
 return mean;
}

void harness(void) {
 unsigned int x = symbol_int(),
 y = symbol_int();
 mean(x, y);
}

Assert failure
model {
 symbol x 2147483650
 symbol y 2147483655
}

Indeed:

(x ⊕ y)
2

= 2147483650 ⊕ 2147483655
2

= 9
2

= 4

From a Concrete to a Parallel
Symbolic Interpreter

25 / 55

Owi’s Old Concrete Interpreter

Initially, something like:

match instr, stack with
 Binop Add , x :: y :: stack -> (add_i32 x y) :: stack
| If_else (t, f), cond :: stack ->
 let cond = bool_of_i32 cond in
 if cond then eval t stack
 else eval f stack

How to get a symbolic interpreter from this?

26 / 55

Step 1/2 : Abstract Over the Type of Values

module type Value = sig
 type t
 val add_i32 : t -> t -> t
 type bool
 val bool_of_i32 : t -> bool
end

| Binop Add, x :: y :: stack ->
 (Value.add_i32 x y) :: t
| If_else (if_t, if_f), cond :: stack ->
 let cond = Value.bool_of_i32 cond in
 if cond then eval if_t stack
 else eval if_f stack

Definition of type t can change :

▶ concrete case : a concrete value (42)
▶ symbolic case : a symbolic expression (x < 42 && y = x || y = 22)

What is our expression language?

27 / 55

The Smt.ml Library

▶ provides a type of symbolic
expressions

▶ can map expressions to many SMT-
solver

▶ provides optimisations
(simplifications, cache through hash-
consing)

▶ ease of use (more typing)
▶ incremental mode

28 / 55

Step 2/2 : Abstract Over the Execution Strategy

module type Choice = sig
 type 'a t
 val return: 'a -> 'a t
 val bind: 'a t -> ('a -> 'b t) -> 'b t
 val select: Value.bool -> bool t
end

| If_else (if_t, if_f), cond::stack ->
 let cond = Value.bool_of_i32 cond in
 (* the single new line: *)
 let* cond = Choice.select cond in
 if cond then eval if_t stack
 else eval if_f stack

▶ most of the code unchanged
▶ we must insert Choice.select and Choice.bind at branching point

The definition of Choice can change :
▶ concrete case: identity monad
▶ symbolic case, it must:

■ evaluates both branches
■ store the state (Wasm and PC)

29 / 55

Parallel, Symbolic, Choice Monad Implementation

Symbolic implementation is an actual choice monad made of:
▶ an error monad;
▶ a state monad;
▶ a coroutine monad.

Branches are explored in parallel thanks to OCaml 5!

30 / 55

Want More Details?

Described in our journal article: Owi: Performant Parallel Symbolic Execution
Made Easy, an Application to WebAssembly.

31 / 55

Simple Wasm example

(module
 (import "symbolic" "i32_symbol"
 (func $sym_i32 (result i32)))

 (func $start (local $x i32)
 (local.set $x (call $sym_i32))
 (if
 (i32.lt_s
 (i32.const 5)
 (local.get $x))
 (then unreachable)))

 (start $start)
)

Then, simply use owi sym:

$ owi sym file.wat
Trap: unreachable
model {
 symbol symbol_0 i32 6
}
Reached problem!

We also have:

▶ owi conc for concolic execution;
▶ owi replay to re-run and replace

symbols by concrete values from a
model.

C, C++ and Rust Symbolic
Execution

33 / 55

C Symbolic Execution

#include <owi.h>

unsigned int mean1(unsigned int x,
 unsigned int y) {
 return (x & y) + ((x ^ y) >> 1);
}

unsigned int mean2(unsigned int x,
 unsigned int y) {
 return (x + y) / 2;
}

void main(void) {
 unsigned int x = owi_i32();
 unsigned int y = owi_i32();
 owi_assert(mean1(x, y) == mean2(x, y)); }

The subcommand owi c takes
care of compiling and linking:

$ owi c ./function_equiv.c
Assert failure
model {
 symbol_0 i32 -922221680
 symbol_1 i32 1834730321
}
Reached problem!

Standard library based on
dietlibc. Special handling of
malloc and free to detect use-
after-free or double-free.

34 / 55

C++ Symbolic Execution

#include <owi.h>

struct IntPair {
 int x, y;
 int mean1() const {
 return (x & y) + ((x ^ y) >> 1);
 }
 int mean2() const {
 return (x + y) / 2;
 }
};

int main() {
 IntPair p{owi_i32(), owi_i32()};
 owi_assert(p.mean1() == p.mean2());
}

The subcommand owi cpp takes
care of compiling and linking:

$ owi c++ ./poly.cpp
Assert failure
model {
 symbol symbol_0 i32 -2147483648
 symbol symbol_1 i32 -2147483646
}
Reached problem!

Re-using the symbolic libc.

35 / 55

Rust Symbolic Execution

fn mean1(x: i32, y: i32) -> i32 {
 (x + y) / 2
}

fn mean2(x: i32, y: i32) -> i32 {
 (x & y) + ((x ^ y) >> 1)
}

fn main() {
 let x = owi_sym::u32_symbol() as i32;
 let y = owi_sym::u32_symbol() as i32;
 owi_sym::assert(mean1(x, y) == mean2(x, y))
}

The subcommand owi rust takes
care of compiling and linking:

$ owi rust ./main.rs
Assert failure
model {
 symbol symbol_0 i32 1073741835
 symbol symbol_1 i32 -2147483642
}
Reached problem!

Re-using the symbolic libc.

Cross-Language Bug-Finding

37 / 55

Moving a Codebase from C to Rust

Original C version:

float dot_product(float x[2], float y[2]) {
 return (x[0]*y[0] + x[1]*y[1]);
}

New Rust version:

fn dot_product_rust(x: &[f32; 2], y: &[f32; 2]) -> f32 {
 x.iter().zip(y).map(|(xi, yi)| xi * yi).sum()
}

38 / 55

Is It Correct?

Owi says no:

model {
 symbol_0 f32 -0.
 symbol_1 f32 -0.
 symbol_2 f32 0.
 symbol_3 f32 0.
}

39 / 55

Breaking it Down

C version:

x[0] * y[0] + x[1] * y[1]

-0. * 0. + -0. * 0.

-0. + -0.

-0.

Rust version:

x.iter().zip(y).map(|(xi, yi)| xi * yi).sum()

[-0.,-0.].iter().zip([0.,0.]).map(|(xi,yi)|xi*yi).sum()

[(-0.,0.),(-0.,0.)].map(|(xi,yi)|xi*yi).sum()

[-0., -0.].sum()

+0. + -0. + -0.

+0.

▶ fixed in the Rust standard library
▶ initial accumulator for sum() is now -0.
▶ it broke typst (the tool used to make these slides) that was relying on this

behaviour

Solver-Aided Programming

41 / 55

Polynomial Example

#include <owi.h>

class Poly {
private: int poly;
public:
 Poly(int a, int b, int c, int d){
 int x = owi_i32();
 int x2 = x * x;
 int x3 = x2 * x;
 poly = a*x3 + b*x2 + c*x + d; }
 int hasRoot() const {
 return poly == 0; } };

int main() {
 Poly p(1, -7, 14, -8);
 owi_assert(not(p.hasRoot())); }

This is similar to Rosette for Racket
(“solver-aided programming”) but:

▶ parallel
▶ multi/cross-language

We used it for :

▶ solving a maze
▶ generate a set of cards for dobble
▶ generate strongly regular graph with

parameters (9,4,1,2)
▶ generate music sheet for a string quartet

42 / 55

Music Generation

▶ limit on the
instruments’ range

▶ no crossing
▶ no leap of more than an

octave
▶ notes belongs to the

key
▶ the leading tone

resolves to the tonic
▶ instruments form

chords
▶ no parallel fifths or

octaves

Towards Proofs

44 / 55

ACSL

The ANSI/ISO C Specification Language (ACSL).

Allows to write function contracts:

/*@ requires precondition
 ensures postcondition
*/
int f(int n) { ... }

But also assertions, loop invariants, type invariants…

45 / 55

E-ACSL

The Executable subset of ACSL (E-ACSL).

/*@ requires n <= INT_MAX - 3;
 ensures \result == n + 3; */
int plus_three(int n) {
 return n + 3;
}

int __gen_e_acsl_plus_three(int n) {
 long __gen_e_acsl_at = (long)n;
 int __retres;
 { __e_acsl_assert_register_int(...);
 __e_acsl_assert(n <= 2147483644);
 __e_acsl_assert_clean(...); }
 __retres = plus_three(n);
 { __e_acsl_assert_register_int(...);
 __e_acsl_assert_register_long(...);
 __e_acsl_assert((long)__retres ==
__gen_e_acsl_at + 3L);
 __e_acsl_assert_clean(...); }
}

46 / 55

E-ACSL Support in Owi

We re-use the code generator from E-ACSL, but uses our own symbolic E-ACSL
runtime:

void __e_acsl_assert(int predicate, __e_acsl_assert_data_t *data) {
 owi_assert(predicate);
}

Available through owi c --e-acsl. It allows to symbolically execute code annotated
by specifications by generating executable assertions.

Described in our paper Cross-Language Symbolic Runtime Annotation Checking.
There we show how the subset of ACSL supported by E-ACSL can be extended
when targetting symbolic execution.

47 / 55

Weasel

We started to do the same in Wasm:

(module
 (@contract $plus_three
 (ensures (= result (+ $n 3))))
 (func $plus_three (param $n i32)
 (result i32)
 local.get $n
 i32.const 3
 i32.add
))

Design of Weasel (WEbAssembly SpEcification Language).

It uses the custom annotation syntax proposal.

48 / 55

Generating Assertions from Weasel

We did something similar to E-ACSL, still experimental :

(module
 (@contract $plus_three
 (ensures (= result (+ $n 3))))
 (func $plus_three (param $n i32)
(result i32)
 local.get $n
 i32.const 3
 i32.add
)
 (start $plus_three)
)

(import "symbolic" "assert"
 (func $assert (param i32)))
(func $__weasel_plus_three (param $n i32)
(result i32) (local $__weasel_temp i32)
(local $__weasel_res_0 i32)
 (call $plus_three (local.get 0))
 local.set 2
 (i32.eq (local.get 2) (i32.add (local.get
0) (i32.const 3)))
 call $assert
 local.get 2
)
(start $__weasel_plus_three)

49 / 55

What can we do with this?

Contrary to most symbolic execution engine, Owi does not perform any
approximation (modulo the source language compiler approximation wrt.
undefined behaviours).

When the analysis terminates, we’ve got a proof!

It could be used to proove programs or functions on its own.

It could also combined with:

▶ a deductive verification tool to automate the proof, or find counter-examples;
▶ an abstract interpretation engine to confirm or infirm bugs found.

Benchmarks

51 / 55

On Wasm Code

A hand-written Wasm B-Tree library with 27 possible configurations (number of
symbols):

Tool Min Max Mean
Owi-24 1.0 1.0 1.0
Owi-1 0.6 14.0 4.5
WASP 0.4 16.4 4.1

SeeWasm 2.5 101 57.1
Manticore 17.2 844 312

52 / 55

On C Code

1215 C programs from Test-Comp.

Tool Bug found Timeout Bug not found
KLEE 782 368 65
Owi 676 539 0

Symbiotic 489 657 69

Good results, especially when we know that Owi:
▶ does no approximation;
▶ has no optimisation appart from the multi-core;
▶ these are old benchmarks…

Most of the time is spent in the solver. What can we do about it?

53 / 55

One new optimisation: concolic execution

⊤ ⊥

mean < x

⊤ ⊥

mean < y mean ≥ x

trap mean ≥ y

▶ we begin with random values for symbols
▶ we keep the symbolic and concrete state
▶ no need to call the solver at each branch
▶ but we still keep the PC
▶ if we found a bug, we’re done
▶ otherwise, we start again but with values leading

to a new branch (we ask the SMT using our list of
PC)

This is what most engine are doing. AKA “dynamic symbolic execution”.

54 / 55

Another new optimisation: path-condition slicing

The PC contains many formulas unrelated to most branching conditions.

This is slowing-down the SMT-solver.

We use a union-find data-structure where keys are variables and nodes are set of
(related) constraints.

When meeting a new branch, we add the condition to the PC, then slice it, and only
send the slice to the solver.

55 / 55

Current goals

▶ support Wasm GC to handle Java, OCaml and Guile
▶ add heuristics to explore interesting paths first
▶ proper symbolic system interface
▶ automatic harness generation
▶ complex coverage-critera test-case generation (MCDC)
▶ better error reporting (editor integration)

We want to explore industrial applications and
welcome discussions with users interested in Owi, as
well as R&D on Wasm and programming languages.
We are welcoming interns and can co-supervize PhD
students.

Bonus

57 / 55

No bonus this time!

	Context
	The Web client-side: HTML
	The Web client-side: CSS
	The Web client-side: JavaScript
	The Web client-side: JavaScript
	The Web client-side: JavaScript
	The Web client-side: JavaScript
	The Web client-side: JavaScript
	JavaScript Downsides
	WebAssembly (Wasm)
	Outline

	Introduction to Wasm
	Wasm 1.0 (2017)
	Example of a Wasm Program
	Linear Memory
	Host Interactions

	Owi as a Wasm toolkit
	Owi?
	List of Subcommands
	Supported extensions
	Dagstuhl Mars 2023

	Symbolic Execution in a Nutshell
	Symbolic Execution Purposes
	Core ideas
	Execution Tree
	Symbols, harness and model

	From a Concrete to a Parallel Symbolic Interpreter
	Owi's Old Concrete Interpreter
	Step 1/2 : Abstract Over the Type of Values
	The Smt.ml Library
	Step 2/2 : Abstract Over the Execution Strategy
	Parallel, Symbolic, Choice Monad Implementation
	Want More Details?
	Simple Wasm example

	C, C++ and Rust Symbolic Execution
	C Symbolic Execution
	C++ Symbolic Execution
	Rust Symbolic Execution

	Cross-Language Bug-Finding
	Moving a Codebase from C to Rust
	Is It Correct?
	Breaking it Down

	Solver-Aided Programming
	Polynomial Example
	Music Generation

	Towards Proofs
	ACSL
	E-ACSL
	E-ACSL Support in Owi
	Weasel
	Generating Assertions from Weasel
	What can we do with this?

	Benchmarks
	On Wasm Code
	On C Code
	One new optimisation: concolic execution
	Another new optimisation: path-condition slicing
	Current goals

	Bonus
	No bonus this time!

